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Background and Objective: The aim of this in vitro
study was to investigate the effect of Er:YAG laser
irradiation on the ability of sodium hypochlorite (NaOCl)
to dissolve soft tissue during endodontic procedures.
Materials and Methods: Two acrylic glass plates, each
containing a semi-canal, were bolted together to form a
complete canal. This geometry permitted one semi-canal to
be filled with fine liver sausage of bovine origin dyed by
methylene blue and the other with NaOCl (4.00–4.99%
available chlorine; Sigma–Aldrich Corporation, St. Louis,
MA), which was then activated by Er:YAG laser irradia-
tion (KEY Laser 3; KaVo, Biberach, Germany) using a
plain-ended fiber tip and a range of output energy and
repetition rate. To achieve relatively low output energy
from high input energy, the laser beam was attenuated by
placing glass slides in the beampath. The resultant images
acquired were analyzed using pixel-based analysis. Sam-
ples were statistically analyzed (two-way ANOVA,
P < 0.05, univariate, bifactorial; IBM SPSS Statistics 19,
SPSS Inc., Chicago, IL).
Results: Both output energy and repetition rate signifi-
cantly influenced the tissue dissolution ability of NaOCl
(P < 0.05).
Conclusion: Within the limitations of this in vitro study,
we conclude that laser activation of NaOCl at 200 mW
output power leads to effective soft tissue dissolution. This
finding can be of use to endodontists pursuing effective soft
tissue dissolution from their irrigants. Lasers Surg. Med.
45:339–344, 2013. � 2013 Wiley Periodicals, Inc.
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INTRODUCTION

In endodontic therapy, removal of soft tissue in the root
canal is critical in eliminating nutritive substances for
residual microorganisms. Because of its superior tissue-
dissolving and bactericidal abilities, sodium hypochlorite
(NaOCl) is the widely-preferred endodontic irrigant [1–4].
However, failure of endodontic therapy is commonplace in
clinical practice because of the difficulty in achieving
appropriate chemo-mechanical cleaning throughout the
entirety of the complex root canal anatomy (curvatures,
lateral branches, and apical ramifications) [5]. This results in
residual nutritive substances and residual microorganisms

in the root canal. There is thus a continuing demand for
adjuvant or alternative methods.

Efforts have been made to achieve sonic and ultrasonic
activation of irrigants. Compared with traditional syringe
irrigation, an improvement in root canal cleaning could be
detected for ultrasonically activated NaOCl because of
agitation or temperature rise [4,6,7], but the results are
inconsistent [4]. Furthermore, there is a lack of certainty
about the nature of the effects: the role of cavitation
remains controversial [4,7].

Another field of interest is the application of laser
technology to endodontics. A multitude of studies have
evaluated the bactericidal effect of radiation with different
laser systems. Except for Enterococcus faecalis, lasers can
reduce bacteria below detectable levels [8–15]. When
combined with endodontic irrigants, even E. faecalis was
susceptible to lasers [15–17].

Laser systems with wavelengths strongly absorbed in
water are of great interest. The Er:YAG-Laser produces a
beam of light with a wavelength (2.94 mm) whose
extinction coefficient in water is maximal [18]. Further
investigations have demonstrated that different laser
systems can create fluid motion [19–22] and that laser-
activated irrigation can remove dentin debris [6,23,24].
However, these investigations have not extended to
explore soft tissue dissolution by laser-activated irrigation.
Thus, the aim of the study was to investigate the effect of
Er:YAG laser irradiation on the in vitro soft tissue-
dissolving ability of NaOCl. To our knowledge, this is the
first description of this type of experimental set-up in the
literature.
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MATERIALS AND METHODS

Root Canal Model

The developed root canal model consisted of two acrylic
glass plates, each with a semi-canal that, when combined,
formed a complete canal (diameter: 1.5 mm, length:
20 mm). This geometry enabled us to fill one semi-canal
with a soft tissue formulation (fine liver sausage of bovine
origin, used because of its homogeneous and brushable
consistency) and the other with NaOCl (4.00–4.99%
available chlorine; Sigma–Aldrich Corporation, St. Louis,
MI), to be activated by laser irradiation. Tissue of bovine
origin has been extensively used previously for tissue
dissolution [3,25,26]. The liver sausage was dyed with
methylene blue (Merck, Darmstadt, Germany) to enhance
the visibility of tissue dissolution.

Experimental Setup

Preliminary studies were performed to optimize the
testing procedures. After filling one semi-canal with dyed
soft tissue substitute using a fine spatula, the acrylic plates
were screwed together. The empty semi-canal was then
carefully filled with NaOCl using a syringe (diameter:
0.5 mm) without disturbing the tissue.

The root canal model was fixed upright on a positioning
device. An endodontic handpiece with a fiber tip was fixed
to a second positioning device. This setup (Fig. 1) allowed
only vertical movements of the fiber tip inside the canal
during the experimental procedures. The study was
performed at room temperature.

Laser Treatment

An Er:YAG laser (wavelength: 2.94 mm, no air or water;
KEY Laser 3; KaVo, Biberach, Germany) was used with an

endodontic handpiece (KaVo 2062; KaVo) and a plain-
ended fiber tip made of silica (diameter: 300 mm). As
shown in Table 1, four groups (groups 2–5) received
variation in output energy and repetition rate. Running
laserswith apumpenergy close to the laser threshold led to
instability and a loss of reliability when working at this
relatively low output energy. This was resolved by using a
higher pump energy (to ensure stability) but with glass
slides apposed into the beam path in front of the coupling
into the fiber optics to attenuate the beam such that
the beam profile at the output end of the fiber tip was
unchanged. The actual output energy was measured with
an external laser energy meter (Nova; Ophir Optics,
Wilmington, MA). In the control group (group 1), neither
NaOCl exposure nor laser activation took place. These
samples served as reference for a pre-dissolution tissue-
filled canal. The fiber tip was immersed to the full length of
the canal (20 mm) then immediately withdrawn as far as
the upper edge of the root canal model. This process was
repeated seven times. Laser activation occurred only during
withdrawal of the fiber tip away from the apex, which took
15 seconds (withdrawal velocity: 1.33 mm/second). Immer-
sion in the canal without laser activation took 2 seconds.
At an output energy of 10 mJ, fluid was noticeably
extruded from the canal, so a sealing ring of silicone
with a hole through which to insert the fiber was attached
to the upper edge of the root canal model with adhesive
tape. All experiments were performed by the same
investigator to ensure comparability.
The root canal model was placed horizontally with the

NaOCl compartment uppermost, and was unscrewed
immediately after the experiment. Residual NaOCl was
absorbed carefully with paper towels, with care not to
disturb the tissue. Results were documented by acquiring
pictures of each semi-canal with its residual tissue (Sony
HDV Handycam; Carl Zeiss AG, Feldbach, Switzerland).
Damage to the plain-ended fiber tip was assessed after

each experiment using a light microscope (Axiophot, Carl
ZeissAG).Where necessary, the damagewas repairedwith
a grinding device consisting of an acrylic glass cylinder
with a central drill hole (diameter: 0.3 mm) into which the
fiber could be positioned without clearance. This ensured
that only the damaged parts were exposed and that the
plain endwas grained perpendicularly to the tip’s axis. The
grinding procedure was carried out by hand on wet
abrasive paper (grain size: 2,500 and 4,000) and opaline.
After grinding, the tip was re-checked under the light
microscope.

Quantification of Soft Tissue Dissolution

Pictures were analyzed using ImageJ, a Java-based
public domain software tool developed by the National
Institutes of Health, USA (available at http://rsb.info.nih.
gov/ij/). In areas where dissolution had occurred, the
acrylic glass surface was visible. To adjust the light
absorption of this material, the average maximal L-value
(CIE Lab Color Space) of the adjacent acrylic glass surface
was determined by threemeasurements in different places

Fig. 1. Experimental apparatus for Er:YAG laser activation of
sodium hypochlorite for soft tissue dissolution in an artificial root
canal.
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for each photo using the histogram function of ImageJ.
Subsequently, all areas of the picture except the semi-
canal were excluded using Adobe Photoshop CS3 Version
10.0 (Adobe Systems Inc., San Jose, CA) to isolate the
region of interest. The L-value was subsequently reduced
to the pre-determined individual maximal L-value of the
adjacent acrylic surface. Thus, using the “Adjust-Color
Threshold” function of ImageJ, pixels of those areas where
the acrylic glass surface had been visible were represented
as white (L-value of 255). Where deeply blue-colored
residual tissue remained, the L-value was less than 255
and the pixels were not filtered out. The relative extent of
tissue dissolution was determined as the quotient of the
number of pixels where L ¼ 255 (dissolved areas) and the
total number of pixels of the root canal. Figure 2 shows
examples for pictures of root canals filled with dyed soft
tissue before and after tissue dissolution, and after
adjustment of the light absorption.

Data Analysis

The datawere statistically analyzed by two-wayANOVA
(P < 0.05, univariate, bifactorial; IBM SPSS Statistics 19,
SPSS Inc., Chicago, IL).

RESULTS

There were significant differences (P < 0.05) in tissue
dissolution between all groups, except between groups 3
and 4 and groups 2 and 4. Both output energy and
repetition rate had a significant influence on the ability of
NaOCl to dissolve soft tissue. The influence of the energy
on the relative extent of tissue dissolution was stronger
(h2 ¼ 0.75) than the influence of the repetition rate
(h2 ¼ 0.56). Furthermore, there was an almost linear
correlation between the energy and the relative extent
of tissue dissolution. When the parameters were set to
10 mJ/20 Hz, the resultant tissue dissolution was almost
complete (Figs. 3 and 4).

DISCUSSION

A root canal model was established such that (1) it could
be filledwith soft tissue substitute, (2) a laser fiber tip could
be used within the filled canal without scratching soft
tissue off the canal walls and (3) the experimental
procedure could be observed in its entirety. Previously
used root canalmodels [6,19,27] did notmeet these criteria.
As in any in vitro model, there are limitations compared
with the clinical situation: for instance, the smooth root

TABLE 1. Laser Settings in Each of the Five Experimental Groups

Group

Input energy

(mJ; number of glass

slide attenuators (gs))

Output

energy (mJ)

Repetition

rate (Hz)

Laser

pulses

Output

power (mW)

1 (n ¼ 2) 0 0 0 0 0

2 (n ¼ 5) 80 (þ3 gs) 5 10 1,050 50

3 (n ¼ 5) 120 (þ2 gs) 10 10 1,050 100

4 (n ¼ 5) 120 (þ3 gs) 5 20 2,100 100

5 (n ¼ 5) 100 (þ1 gs) 10 20 2,100 200

Fig. 2. Dyed soft tissue after adjustment of light absorption. Images show residual tissue and areas
of dissolution in the root canal model.
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canal walls in the model compared with the non-uniform
surface of the root canal in vivo.
The effectiveness of the laser application was investi-

gated using a relatively low output power. Primarily, the
procedure should be such that its use in clinical practice is
feasible. Many studies using higher power settings
reported flushing of the rinsing solution from the canal
because of the high-speed fluid motion [21,22], a phenome-
non that was also observed in this study. The uncontrolla-
ble nature of this fluid ejection at high output power
represents a significant safety problem for both the patient
and dental staff given the corrosiveness of this irrigant.
Furthermore, the risk of an apical extrusion of irrigant
induced by laser activation [27] should be reduced by
decreasing the laser parameters. Additionally, a safety
distance to the ablative threshold seems to be advisable, as
collateral damage could be produced by direct contact of
the fiber tip with the root canal wall [23], which cannot be
excluded in practice. Vapor bubbles arose at very low
energy and repetition rate parameters and continued to
occur when these parameters were increased. Preliminary
studies detected vapor bubble formation in cases where
this laser system was used in distilled water with a plain-
ended fiber tip at an output energy of 0.36 mJ or higher.
Furthermore, the length of the vapor bubbles increases
linearly with higher output energies [22]. If there is a great
discrepancy in the dimensions of the canal and vapor
bubbles, the bubbles could fill the canal. Blanken et al. [22]
showed that almost the whole canal was filled with vapor
at their settings. The rinsing solution was displaced
upwards and downwards towards the apical region. To
make the fluid motions within the canal more predictable,
these bubbles must be diminished by using a low output
energy.
In this in vitro study, the fiber was immersed to the full

canal length (20 mm), whereas in real teeth with an apical
foramen, a safety distance from the apex is recom-
mended [21,22,28], which will vary depending on the
length of the vapor bubbles and thus on the laser settings.
Preliminary studies using this laser systemwith the plain-
ended fiber tip in distilledwater showed that vapor bubbles
had a length of 1.4 mm at an output energy of 10 mJ.
However, to reliably predict a suitable safety distance,
further studies are required to characterize bubble
creation in sodium hypochlorite in the appropriate
geometrical environment at these same laser settings.
Because the ejection of NaOCl is a safety problem, a

further safety device similar to the sealing ring should be
developed to preventNaOCl from extruding coronally from
the canal, unless the suction protocol is rigorous and fail-
safe. In practice, one cannot prevent irrigant from escaping
from the canal, for example into the cavum dentis.
Therefore, the use of copious irrigation to refresh irrigant
levels between laser activations, according to the common
protocol, is to be recommended. This is also important to
refresh the available chlorine. Macedo et al. [29] showed in
an in vitro study that laser activation is a strongmodulator
of the reaction rate of NaOCl, increasing the consumption
of available chlorine significantly. As the quantity of

Fig. 3. Influence of laser energy on the relative extent of tissue
dissolution by sodium hypochlorite.

Fig. 4. Influence of the repetition rate on the relative extent of
tissue dissolution by sodium hypochlorite.
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available chlorine is essential for tissue dissolution,
regular exchange of NaOCl to maintain optimal available
chlorine levels could further increase tissue dissolution.
However, a conventional rinsing protocol with continuous
exchange of rinsing solutionwas not included in this study.
The beam profile of a plain-ended fiber tip can be

described as forward-emitting and slightly divergent. The
sidewalls in a root canal are not directly affected. Instead,
the endangered apical region, where irrigant could escape,
is most affected. Nevertheless, we chose this geometry
because the use of the fiber in the canal caused damage
to the tip and, upon checking for damage after each
experiment, restoration of the tip to this geometrywas both
more time- and cost-efficient. Repair is critical because the
effectiveness and safety of the treatment is no longer
guaranteed if damaged fiber tips are used since this
damage changes their beam profile [30]. Efforts have been
made to create side-firing fibers that seem more suitable
for application to the endodontic field [31]. The output
power level of such side-firing tips would necessarily be
lower when using the same laser settings, so re-optimiza-
tion of the settings would be required to achieve compara-
ble results.
The quantification of soft tissue dissolution has been

carried out in several ways, for example by the evaluation
of weight loss [2,3] or spectrophotometric analysis [1]. In
this study, a new optical quantification technique based on
ImageJ analysis software has been developed. The efficacy
of this software for image processing and analysis has been
demonstrated in many publications describing the analy-
sis of ultrasonographic images [32], the quantification of
fluorescence signals [33], adipose tissue [34], and leukocyte
adhesion [35].
Both output energy and repetition rate had significant

influence on the extent of tissue dissolution which is
probably due to a positivemodulation of the reaction rate of
NaOCl [29] and fluid motion effects. Vapor bubbles are
created by local heating and vaporization effects. Second-
ary cavitation effects [21,22] are also induced and
imploding bubbles result in strong liquid turbulence,
which is likely to augment soft tissue dissolution.

CONCLUSION

Within the limitations of this in vitro study, we
conclude that laser activation of NaOCl at an output
power of 200 mW generates highly effective soft tissue
dissolution.
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